
School:

Date: Teacher‘s name:

Grade: Number present: absent:

Topic of the lesson: Sequences: strings, lists, dictionaries

Learning objective(s)

that this lesson is

contributing to

Introduce sequence design: strings, lists, dictionaries

Showing the principles of the sequence: lines, lists, dictionaries

Lesson objectives All learners will be able to:

 Know the sequence constructions: strings, lists, dictionaries and use in

programming

Most learners will be able to:

 Distinguish between designs, work sequences: strings, lists, dictionaries and use

in programming

Some learners will be able to:

 • Compose programs using a sequence: lines, lists, dictionaries

Assessment Criteria Owns the principles of the sequence: lines, lists, dictionaries

Able to make simple programs using sequences: strings, lists, dictionaries

Value links Spiritual development, respect for each other, mutual understanding

Previous learning Students work on their level of programming

Cross curricular links maths

Time Planned activities

Resources

Beginning

2 min

Organizing time

Greeting students.

Announcement of the lesson topic, learning objectives, joint definition of

lesson objectives and assessment criteria

 slide

Middle

 10 min

 5 min

Go to the topic

Grouping.

Discussion with the class.

“Why did you come together that way?”

II. Generalization and systematization of knowledge.

Oral frontal survey using presentation.

In the Python programming language, dictionaries (type dict) are another kind of

data structure along with lists and tuples. A dictionary is a mutable (like a list)

unordered (as opposed to strings, lists, and tuples) set of key-value elements.

"Unordered" means that the sequence the location of the pairs is not important.

The programming language does not take it into account, as a result of which it is

impossible to access elements by indexes.

In other languages, structures similar to dictionaries are called differently. For

example, in Java, such a data type is called a mapping.

To make the idea of the dictionary more understandable, we draw an analogy with

a conventional dictionary, for example, English-Russian. For every English word

 16 min

in such a dictionary there is a Russian translation word: cat - cat, dog - dog, table -

table, etc. If you describe the English-Russian dictionary using Python, then

English words can be made keys, and Russian words can be made values:

{'cat': 'cat', 'dog': 'dog', 'bird': 'bird', 'mouse': 'mouse'}

Pay attention to braces, it is with their help that a dictionary is defined. The syntax

of the dictionary in Python is described by the following scheme:

Often, when a dictionary is displayed, the sequence of key-value pairs does not

match the way it was entered:

>>> a = {'cat': 'кошка', 'dog': 'собака', 'bird': 'птица', 'mouse': 'мышь'}

>>> a

{'dog': 'собака', 'cat': 'кошка', 'bird': 'птица', 'mouse': 'мышь'}

Since the order of the pairs is not important in the dictionary, the interpreter

displays them as it suits it. Then how to get access to a certain element if indexing

is not possible in principle? In the dictionary, values are accessed by keys, which

are enclosed in square brackets (similar to list indexes):

>>> a['cat']

'кошка'

>>> a['bird']

'птица'

Dictionaries, like lists, are a mutable data type: it is possible to modify, add and

delete elements (key: value pairs). Initially, you can create a dictionary empty (for

example, d = {}) and then fill it with elements. Adding and changing has the same

syntax: dictionary [key] = value. The key can be either already existing (then the

value changes), and new (adding a dictionary item). Removing an element is done

using the Python built-in del operator.

>>> a['elephant'] = 'бегемот' # добавляем

>>> a['table'] = 'стол' # добавляем

>>> a

{'dog': 'собака', 'cat': 'кошка', 'mouse': 'мышь', 'bird': 'птица', 'table': 'стол',

'elephant': 'бегемот'}

>>> a['elephant'] = 'слон' # изменяем

>>> del a['table'] # удаляем

>>> a

{'dog': 'собака', 'cat': 'кошка', 'mouse': 'мышь', 'bird': 'птица', 'elephant': 'слон'}

The dictionary cannot have two elements with the same keys. However,

different keys may have the same values.

The key can be any immutable data type. Value is any data type. Values of

dictionaries may well be structures, for example, other dictionaries or lists.

 5 min

>>> nums = {1: 'one', 2: 'two', 3: 'three'}

>>> person = {'name': 'Tom', 1: [30, 15, 16], 2: 2.34, ('ab', 100): 'no'}

Enumerating dictionary items in a for loop

Vocabulary elements are iterated over in a for loop as well as elements of other

complex objects. However, by default, only keys are retrieved:

>>> nums

{1: 'one', 2: 'two', 3: 'three'}

>>> for i in nums:

... print(i)

...

1

2

3

But with the keys you can always get the values:

>>> for i in nums:

... print(nums[i])

...

one

two

three

On the other hand, the dictionary as a class has the items () method, which creates

a special structure consisting of tuples. Each tuple includes a key and a value:

>>> n = nums.items()

>>> n

dict_items([(1, 'one'), (2, 'two'), (3, 'three')])

In the for loop, you can unpack tuples, thus immediately extracting both the key

and its value:

>>> for key, value in nums.items():

... print(key, 'is', value)

...

1 is one

2 is two

3 is three

The dictionary methods keys () and values () allow you to obtain separately lists of

keys and values. So if, for example, you need to iterate over only the values or

only the keys, it is better to use one of these methods:

>>> v_nums = []

>>> for v in nums.values():

... v_nums.append(v)

...

>>> v_nums

['one', 'two', 'three']

Dictionary Methods

In addition to the three methods described above, items (), keys (), and values (),

dictionaries have eight more. These methods are clear (), copy (), fromkeys (), get

(), pop (), popitem (), setdefault (), update ().

The clear () method deletes all elements of the dictionary, but does not delete the

dictionary itself. As a result, an empty dictionary remains:

>>> a

{'dog': 'собака', 'cat': 'кошка', 'mouse': 'мышь', 'bird': 'птица', 'elephant': 'слон'}

>>> a.clear()

>>> a

{}

A dictionary is a mutable data type. Therefore, like a list, it is passed to the

function by reference. Therefore, sometimes, in order to avoid undesirable changes

in the global dictionary, it is copied. This is done for other purposes.

>>> nums2 = nums.copy()

>>> nums2[4] = 'four'

>>> nums

{1: 'one', 2: 'two', 3: 'three'}

>>> nums2

{1: 'one', 2: 'two', 3: 'three', 4: 'four'}

The fromkeys () method allows you to create a dictionary from a list whose

elements become keys. You can apply the method to both the dict class and its

objects:

>>> a = [1, 2, 3]

>>> c = dict.fromkeys(a)

>>> c

{1: None, 2: None, 3: None}

>>> d = dict.fromkeys(a, 10)

>>> d

{1: 10, 2: 10, 3: 10}

>>> c

{1: None, 2: None, 3: None}

The get () method allows you to get an element by its key:

>>> nums.get(1)

'one'

Equivalent to nums [1].

The pop () method removes an element from the dictionary by the specified key

and returns the value of the deleted pair. The popitem () method takes no

arguments, deletes and returns an arbitrary element

>>> nums.pop(1)

'one'

>>> nums

{2: 'two', 3: 'three'}

>>> nums.popitem()

(2, 'two')

>>> nums

{3: 'three'}

Using setdefault (), you can add an item to the dictionary:

>>> nums.setdefault(4, 'four')

'four'

>>> nums

{3: 'three', 4: 'four'}

Equivalent to nums [4] = 'four' if the element with key 4 is not in the dictionary. If

it already exists, then nums [4] = 'four' will overwrite the old value, setdefault ()

will not.

Using update (), you can add another dictionary to the dictionary:

>>> nums.update({6: 'six', 7: 'seven'})

>>> nums

{3: 'three', 4: 'four', 6: 'six', 7: 'seven'}

The method also updates the values of existing keys. Includes a number of

features.

Practical work

1. Create a dictionary by associating it with the school variable and fill it with data

that would reflect the number of students in different classes (1a, 1b, 2b, 6a, 7c,

etc.). Make changes to the dictionary according to the following: a) in one of the

classes the number of students has changed, b) a new class has appeared in the

school, c) another class has been disbanded (deleted). Calculate the total number

of students in the school.

2. Create a dictionary where the keys are numbers and the values are strings.

Apply the items () method to it, transfer the resulting dict_items object to a

function you wrote that creates and returns a new dictionary that is "inverse" to the

original, that is, the keys are strings, and the values are numbers.

End

 39-40 min

Reflection.

Pupils analyze activity in the lesson, describe difficulties, suggest ways to overcome them.

Differentiation – how do you plan to give

more support?

How do you plan to challenge the more

able learners?

Assessment – how are you

planning to check learners’

learning?

Health and Safety

Differentiation in the selection of tasks, in the

expected result from a particular student, in

the provision of individual support to the

student at the stage of solving problems.

Mutual evaluation (according to

the results of the experiment)

Self-assessment (problem

solving)

Compliance with safety regulations

in the computer science cabinet

Lesson reflection

Were the lesson / learning

goals realistic?

Have all students reached

the CO?

If not, why?

Is the differentiation done

correctly in the lesson?

Have the temporary stages

of the lesson been

sustained?

What deviations were from

the lesson plan and why?

Use this section to think about the lesson. Answer the most important

questions about your lesson from the left column.

