
School:

Date: Teacher‘s name: Dzhakipbaev Abai Kazbekovich

Grade: Number present: absent:

Topic of the lesson: Scripts. Script Connection

Learning objective(s)

that this lesson is

contributing to

• development of students' ability to express thoughts, model the situation;

• repetition and consolidation of the basic material, expressed in unusual situations;

Lesson objectives All students will be able to:

· What are scripts and what are they for?

Most students will be able to:

· Make the script <script src = "scripts.js"> </script> correctly

Some students will be able to:

• Understand the difference between the async and defer attributes from each other and

use

Assessment Criteria

Value links fostering respect for others, the ability to properly dispute, the will to learn new things,

resourcefulness, teamwork

Previous learning

Cross curricular links

Time Planned activities

1. Repetition of the passed («hot table» game)

Resources

Beginning

10 min

Build, outline, greeting, message topics and learning objectives. Safety Reminder,

explain success criteria.

Create a program with variables.

Robot with scripts.

The difference between the async and defer attributes from each other.

Computer

Projector

 Internet

Board

Middle

 25 min

Imagine your script occupying tens or hundreds of lines of code. Or even more.

And, of course, we most likely need this script on every page of our site. Agree, it

will be completely bad in this case to duplicate these hundreds of lines of code in

each file. And just the presence of non-HTML code in an HTML document will

not look very right and not very pretty.

That is why JavaScript code is usually taken out in a separate file, which is

connected to the page. Actually, everything is the same as in the case of style files.

How to connect a JavaScript script to the main file? Very simple. To do this, we

use the familiar <script> tag, to which the src attribute is added, in the same way

as in the case with pictures. Well, as you might have guessed, the path to the

JavaScript plugin is specified in the src attribute.

Let's try to transfer our program, which consists of one line of code, to an external

file and include this file. Call this file, for example, scripts.js:

Please note that inside the connected file we need to write script tags. Not only

that, if we write them in a .js file, our JavaScript code will stop working, and we

will get a JavaScript error.

Well, the connection of an external JavaScript file itself:

1 <script src = "scripts.js"> </script>

If we refresh the page now, nothing will change, our script works and, as before,

displays a modal window with a greeting.

What should I look for when connecting scripts? We included the script at the end

of the document, before the closing body tag. Previously, scripting at the

beginning of the document, in head tags, was practiced. However, this is not

recommended today, and scripts recommend connecting it at the end of the

document. Why is that?

Let's try moving the connections between the head tags:

What do we see? Nothing but a modal window. There is no content. That is the

essence. When an external script is connected at the beginning of the document,

the browser starts downloading it and tries to execute it. And until the download

and execution of the script is completed, the browser will not show the part of the

document following the include file.

Now imagine that for some reason this file loads extremely slowly. As a result, the

user will have to wait, and sometimes he may just not wait. That is why it is

recommended to include scripts at the end of the document, before the closing

body tag.

But what if a certain library requires a connection at the very beginning of the

document? How to be in this case? In this case, the async and defer attributes will

help us, which allow the browser to load scripts asynchronously, i.e. the browser

will start loading the script, but it will not stop showing the document. Let's try to

use these attributes one by one:

1 <! - option 1 ->

2 <script src = "scripts.js" async> </script>

3 <! - option 2 ->

4 <script src = "scripts.js" defer> </script>

In both cases, we get the same result, the script is connected without interrupting

the display of the document:

What is the difference between the async and defer attributes from each other? The

defer attribute stores the connection sequence of external scripts, i.e. the first script

that connects above will always be executed first. This is important when we

include several scripts and one of them may depend on the other. In this case, the

main script must be connected before the dependent one. The defer attribute

ensures order. The async attribute will ensure the execution of the script

immediately after loading it. Therefore, this option is not always suitable, since the

dependent script may load earlier than the main one.

End

 5 min

Differentiation – how do you plan to give

more support?

How do you plan to challenge the more

able learners?

Assessment – how are you

planning to check learners’

learning?

Health and Safety

At home, follow the link and learn 2-3

lessons:

https://fructcode.com/ru/courses/javascript-

and-jquery/interactive-first-javascript/

Tech safety

eye exercise

